论文标题
指数积分器为保守或耗散系统保存第一积分或Lyapunov功能
Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems
论文作者
论文摘要
In this paper, combining the ideas of exponential integrators and discrete gradients, we propose and analyze a new structure-preserving exponential scheme for the conservative or dissipative system $\dot{y} = Q(M y + \nabla U (y))$, where $Q$ is a $d\times d$ skew-symmetric or negative semidefinite real matrix, $M$ is a $d\times d$对称的真实矩阵和$ u:\ mathbb {r}^d \ rightarrow \ mathbb {r} $是一个可区分的函数。我们介绍了新方案的两个属性。本文伴随着数值结果,与科学文献中的其他结构保护方案相比,我们新方案的显着优势。
In this paper, combining the ideas of exponential integrators and discrete gradients, we propose and analyze a new structure-preserving exponential scheme for the conservative or dissipative system $\dot{y} = Q(M y + \nabla U (y))$, where $Q$ is a $d\times d$ skew-symmetric or negative semidefinite real matrix, $M$ is a $d\times d$ symmetric real matrix, and $U : \mathbb{R}^d\rightarrow\mathbb{R}$ is a differentiable function. We present two properties of the new scheme. The paper is accompanied by numerical results that demonstrate the remarkable superiority of our new scheme in comparison with other structure-preserving schemes in the scientific literature.