论文标题

木星质量行星在低粘度光盘中的迁移

Migration of Jupiter mass planets in low viscosity discs

论文作者

Lega, E., Nelson, R. P., Morbidelli, A., Kley, W., Béthune, W., Crida, A., Kloster, D., Méheut, H., Rometsch, T., Ziampras, A.

论文摘要

巨型行星的II型迁移与圆盘粘度值大于1.e-4的值的速度与盘的粘度成正比。在较低的粘度下,先前的研究基于2D模拟表明,迁移可能非常混乱,并且通常以快速迁移的阶段为特征。原因是,在低粘度盘中,出现了由于地球打开的间隙边缘的Rossby-Wave不稳定而导致的。然后通过涡旋 - 行星相互作用确定迁移。我们的目的是研究低粘度3D光盘中的迁移。我们使用2D(包括自助性)和3D代码进行了数值模拟。在选择了自我重力并不重要的圆盘质量之后,可以安全地使用没有自我重力的3D模拟。在我们的名义模拟中,仅存在数值粘度。然后,我们进行了具有规定粘度的模拟,以评估新迁移过程出现的阈值。我们表明,对于Alpha粘度<= 1.e-5,可能两种迁移模式与经典的II型迁移有所不同,因为它们与光盘的粘度不成比例。第一个发生时,当地球开设的差距不是很深时。这发生在3D模拟中,当在行星间隙的外边缘形成大涡流时,将其扩散到间隙中。我们将这种类型的迁移称为“涡流驱动的迁移”。这种迁移非常慢,不能无限期地继续,因为涡流最终溶解。当间隙深处时,就会发生第二个迁移模式,使行星的偏心率的值〜0.2 〜0.2,这是由于效率低下的偏心率阻尼而导致旋转共振。第二个更快的迁移模式似乎是圆盘中2D模型的典型特征,而温度扰动的阻尼较慢。

Type-II migration of giant planets has a speed proportional to the disc's viscosity for values of the alpha viscosity parameter larger than 1.e-4 . At lower viscosities previous studies, based on 2D simulations have shown that migration can be very chaotic and often characterized by phases of fast migration. The reason is that in low-viscosity discs vortices appear due to the Rossby-wave instability at the edges of the gap opened by the planet. Migration is then determined by vortex-planet interactions. Our aim is to study migration in low viscosity 3D discs. We performed numerical simulations using 2D (including self-gravity) and 3D codes. After selecting disc masses for which self-gravity is not important, 3D simulations without self-gravity can be safely used. In our nominal simulation only numerical viscosity is present. We then performed simulations with prescribed viscosity to assess the threshold below which the new migration processes appear. We show that for alpha viscosity <= 1.e-5 two migration modes are possible which differ from classical Type-II migration, in the sense that they are not proportional to the disc's viscosity. The first occurs when the gap opened by the planet is not very deep. This occurs in 3D simulations and/or when a big vortex forms at the outer edge of the planetary gap, diffusing material into the gap. We call this type of migration "vortex-driven migration". This migration is very slow and cannot continue indefinitely, because eventually the vortex dissolves. The second migration mode occurs when the gap is deep so that the planet's eccentricity grows to a value ~0.2 due to inefficient eccentricity damping by corotation resonances. This second, faster migration mode appears to be typical of 2D models in discs with slower damping of temperature's perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源