论文标题
一个多模式的框架,用于检测可恶的模因
A Multimodal Framework for the Detection of Hateful Memes
论文作者
论文摘要
在线仇恨言论的越来越普遍的表达本质上是多模式,并以模因的形式出现。如果我们要减轻其对整个社会的不良影响,则设计自动检测可恨内容的系统至关重要。多模式仇恨言论的检测是一个本质上困难和开放的问题:模因使用图像和文本传达一条消息,因此需要多模式推理以及联合的视觉和语言理解。在这项工作中,我们试图推进这一研究,并开发一个多模式框架来检测可恨模因。我们在简单的微调之外提高了现有的多模式方法的性能,除其他外,我们还展示了对比度示例的提升的有效性,以鼓励基于交叉验证的多模式和整体学习以提高鲁棒性。我们进一步分析了模型错误分类,并讨论了许多假设驱动的增强及其对绩效的影响,从而对该领域的未来研究产生了重要意义。我们的最佳方法包括一个基于Uniter的模型的合奏,并取得了80.53的AUROC分数,使我们在Facebook组织的2020次仇恨模因挑战赛的第二阶段中排名第四。
An increasingly common expression of online hate speech is multimodal in nature and comes in the form of memes. Designing systems to automatically detect hateful content is of paramount importance if we are to mitigate its undesirable effects on the society at large. The detection of multimodal hate speech is an intrinsically difficult and open problem: memes convey a message using both images and text and, hence, require multimodal reasoning and joint visual and language understanding. In this work, we seek to advance this line of research and develop a multimodal framework for the detection of hateful memes. We improve the performance of existing multimodal approaches beyond simple fine-tuning and, among others, show the effectiveness of upsampling of contrastive examples to encourage multimodality and ensemble learning based on cross-validation to improve robustness. We furthermore analyze model misclassifications and discuss a number of hypothesis-driven augmentations and their effects on performance, presenting important implications for future research in the field. Our best approach comprises an ensemble of UNITER-based models and achieves an AUROC score of 80.53, placing us 4th on phase 2 of the 2020 Hateful Memes Challenge organized by Facebook.