论文标题

立方非线性磁截图的完整性基础

Integrity bases for cubic nonlinear magnetostriction

论文作者

Taurines, Julien, Olive, Marc, Desmorat, Rodrigue, Hubert, Olivier, Kolev, Boris

论文摘要

所谓的智能材料是一种或多个多物理耦合的材料。在本地或全球范围内,这些材料的本构定律开发的关键点之一是,根据给定的顺序和一类给定的对称性,根据材料或代表性元素的对称性的材料或对称性的晶体对称类别制定自由能密度(或焓)。本文以研究的压力和磁化夫妇($σ$,m)为支持,参与了立方对称介质中磁弹性耦合现象。几项研究确实表明,在应力下,某些软磁性材料的磁敏感性和磁性磁性的非单调灵敏度。建模这种现象需要在Gibbs自由能密度中引入二阶应力项。在两个变量应力中的多项式公式和磁化强度优先于张力公式。对于给定的材料对称类别,这允许在$σ$和m的任何双度(即以任何本构张张量的订单下,用于所谓的张力配方)更容易地表达自由能密度。一种严格而系统的方法对于获得高度磁机械耦合项至关重要,并以任何因立方体(八面体)组的作用而在任何阶的自由能密度函数构建。为此,引入了不变理论中的理论和计算机工具,这些理论允许对立方非线性磁弹性的数学描述进行数学描述。然后提出,在适当的(定向保留)和完整的立方组下,对这对不变的代数的最小完整性库(m,$σ$)。适当的立方组的最小完整性基础由60个不变性组成,而整个立方组的最小完整性基础(磁弹性的感兴趣之一)由30个不变性组成。这些不变性以一种(无坐标)的内在方式制定,使用广义交叉产品编写其中的一些。在(M,$σ$)中对给定多度的独立不变性进行计数。因此,可以证明可以在没有错误的情况下列出所有材料参数,这些参数可用于描述从完整性基础上耦合的磁弹性行为。该技术应用于磁性域尺度上的自由能密度的一般表达式$ψ$ $ \ star $ \ star $($σ$,m),表现为立方对称性。各向同性培养基的经典结果被回收。

A so-called smart material is a material that is the seat of one or more multiphysical coupling. One of the key points in the development of the constitutive laws of these materials, either at the local or at the global scale, is to formulate a free energy density (or enthalpy) from vectors, tensors, at a given order and for a class of given symmetry, depending on the symmetry classes of the crystal constituting the material or the symmetry of the representative volume element. This article takes as a support of study the stress and magnetization couple ($σ$, m) involved in the phenomena of magnetoelastic coupling in a cubic symmetry medium. Several studies indeed show a non-monotonic sensitivity of the magnetic susceptibility and magnetostriction of certain soft magnetic materials under stress. Modeling such a phenomenon requires the introduction of a second order stress term in the Gibbs free energy density. A polynomial formulation in the two variables stress and magnetization is preferred over a tensorial formulation. For a given material symmetry class, this allows to express more easily the free energy density at any bi-degree in $σ$ and m (i.e. at any constitutive tensors order for the so-called tensorial formulation). A rigorous and systematic method is essential to obtain the high-degree magneto-mechanical coupling terms and to build a free energy density function at any order which is invariant by the action of the cubic (octahedral) group. For that aim, theoretical and computer tools in Invariant Theory, that allow for the mathematical description of cubic nonlinear magneto-elasticity, are introduced. Minimal integrity bases of the invariant algebra for the pair (m, $σ$), under the proper (orientation-preserving) and the full cubic groups, are then proposed. The minimal integrity basis for the proper cubic group is constituted of 60 invariants, while the minimal integrity basis for the full cubic group (the one of interest for magneto-elasticity) is made up of 30 invariants. These invariants are formulated in a (coordinate free) intrinsic manner, using a generalized cross product to write some of them. The counting of independent invariants of a given multi-degree in (m, $σ$) is performed. It is shown accordingly that it is possible to list without error all the material parameters useful for the description of the coupled magnetoelastic behavior from the integrity basis. The technique is applied to derive general expressions $Ψ$ $\star$ ($σ$, m) of the free energy density at the magnetic domains scale exhibiting cubic symmetry. The classic results for an isotropic medium are recovered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源