论文标题
rényi自由能和对热状态的变异近似
Rényi free energy and variational approximations to thermal states
论文作者
论文摘要
我们建议建造热力学合奏,以最大程度地减少rényi自由能,以替代吉布斯州。对于大型系统,这些Rényi集合的局部特性与热平衡相一致,并且可以用作热状态的近似值。我们提供算法以找到与2-Rényi集合的张量网络近似值。特别是,可以通过对黎曼流形的基于梯度的优化或通过非线性演化来找到矩阵 - 产物状态表示,该表达可将所需状态作为固定点产生。我们分析了算法的性能以及在一维自旋链上的合奏的性能。
We propose the construction of thermodynamic ensembles that minimize the Rényi free energy, as an alternative to Gibbs states. For large systems, the local properties of these Rényi ensembles coincide with those of thermal equilibrium, and they can be used as approximations to thermal states. We provide algorithms to find tensor network approximations to the 2-Rényi ensemble. In particular, a matrix-product-state representation can be found by using gradient-based optimization on Riemannian manifolds, or via a non-linear evolution which yields the desired state as a fixed point. We analyze the performance of the algorithms and the properties of the ensembles on one-dimensional spin chains.