论文标题

将雷达数据翘曲到相机图像中以进行汽车应用中的跨模式监督

Warping of Radar Data into Camera Image for Cross-Modal Supervision in Automotive Applications

论文作者

Grimm, Christopher, Fei, Tai, Warsitz, Ernst, Farhoud, Ridha, Breddermann, Tobias, Haeb-Umbach, Reinhold

论文摘要

我们提出了一种自动生成语义标签的方法,以实现汽车范围多普勒(RD)雷达光谱的真实记录。当训练神经网络从雷达数据中识别对象识别时,需要此类标签。自动标记方法除了雷达频谱之外,还取决于相机和激光雷达数据的同时记录。通过将雷达光谱翘曲到相机图像中,可以将最新的对象识别算法应用于相机图像中相关对象(例如汽车)。翘曲操作设计为完全可区分,可以通过翘曲操作在雷达数据上运行的神经网络上在相机图像上计算出的梯度。随着翘曲操作依赖于准确的场景流量估计,我们进一步提出了一种新颖的场景流估计算法,该算法利用了相机,激光雷达和雷达传感器的信息。将所提出的场景流估计方法与最新场景流算法进行了比较,并且比它的表现优于大约30%的W.R.T.平均平均误差。通过评估使用拟议的框架训练的神经网络的性能来验证RD光谱自动标签生成的整体框架的可行性。

We present an approach to automatically generate semantic labels for real recordings of automotive range-Doppler (RD) radar spectra. Such labels are required when training a neural network for object recognition from radar data. The automatic labeling approach rests on the simultaneous recording of camera and lidar data in addition to the radar spectrum. By warping radar spectra into the camera image, state-of-the-art object recognition algorithms can be applied to label relevant objects, such as cars, in the camera image. The warping operation is designed to be fully differentiable, which allows backpropagating the gradient computed on the camera image through the warping operation to the neural network operating on the radar data. As the warping operation relies on accurate scene flow estimation, we further propose a novel scene flow estimation algorithm which exploits information from camera, lidar and radar sensors. The proposed scene flow estimation approach is compared against a state-of-the-art scene flow algorithm, and it outperforms it by approximately 30% w.r.t. mean average error. The feasibility of the overall framework for automatic label generation for RD spectra is verified by evaluating the performance of neural networks trained with the proposed framework for Direction-of-Arrival estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源