论文标题

从图像中提取的原则网络提取

Principled network extraction from images

论文作者

Baptista, Diego, De Bacco, Caterina

论文摘要

天然系统的图像可能代表类似网络的结构的模式,该模式可以揭示有关基础主题拓扑特性的重要信息。但是,图像本身并未自动根据节点和边缘的集合提供网络的形式定义。相反,应从原始图像数据中提取此信息。在此激励的情况下,我们提出了一个原则上的模型,以从可扩展有效的图像中提取网络拓扑。我们将此目标映射到解决路由优化问题中,其中解决方案是一个网络,该网络可以最大程度地减少可以根据运营和基础设施成本来解释的能量功能。我们的方法取决于最佳运输理论的最新结果,并且是基于启发式方法的标准图像处理技术的原则性替代方法。我们在视网膜血管系统,粘液模具和河流网络的真实图像上测试了模型,并与将图像处理技术结合在一起的例程进行了比较。根据与提取中保留的信息量相关的相似性度量测试。我们发现,我们的模型从视网膜血管网络图像中找到网络,这些网络与手工标记的网络更相似,同时还可以从河流和史莱姆模具的图像中提取网络时提供高性能,而该网络没有可用的地面真相。尽管没有唯一适合所有图像的唯一方法,但我们的方法在跨数据集中始终如一地执行,但其算法实现是有效的,并且可以完全自动化以在几个数据集上运行,并在几乎没有监督的情况下运行。

Images of natural systems may represent patterns of network-like structure, which could reveal important information about the topological properties of the underlying subject. However, the image itself does not automatically provide a formal definition of a network in terms of sets of nodes and edges. Instead, this information should be suitably extracted from the raw image data. Motivated by this, we present a principled model to extract network topologies from images that is scalable and efficient. We map this goal into solving a routing optimization problem where the solution is a network that minimizes an energy function which can be interpreted in terms of an operational and infrastructural cost. Our method relies on recent results from optimal transport theory and is a principled alternative to standard image-processing techniques that are based on heuristics. We test our model on real images of the retinal vascular system, slime mold and river networks and compare with routines combining image-processing techniques. Results are tested in terms of a similarity measure related to the amount of information preserved in the extraction. We find that our model finds networks from retina vascular network images that are more similar to hand-labeled ones, while also giving high performance in extracting networks from images of rivers and slime mold for which there is no ground truth available. While there is no unique method that fits all the images the best, our approach performs consistently across datasets, its algorithmic implementation is efficient and can be fully automatized to be run on several datasets with little supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源