论文标题

化学动力学的基于深度学习的ODE求解器

A deep learning-based ODE solver for chemical kinetics

论文作者

Zhang, Tianhan, Zhang, Yaoyu, E, Weinan, Ju, Yiguang

论文摘要

为化学整合开发有效,准确的算法是一项具有挑战性的任务,因为它的刚度很强和高维度。当前的工作提出了一种基于深度学习的数值方法,称为DeepCombustion0.0,以解决僵硬的普通微分方程系统。采用DME/空气混合物(包括54种)的同质自动登记,以说明算法的有效性和准确性。训练和测试数据集涵盖了750-1200 K,30-50 ATM之间的广泛温度,压力和混合条件,等效比率= 0.7-1.5。均考虑了第一阶段的低温点火(LTI)和第二阶段的高温点火(HTI)。该方法强调了自适应数据采样技术,功率转换预处理和二进制深神经网络(DNN)设计的重要性。通过使用自适应随机采样和适当的功率变换,可以观察到状态矢量相空间中的平滑亚体,可以对两个三层DNN进行适当的训练。神经网络是端到端,它可以直接预测状态向量的时间梯度。结果表明,DNN预测的时间演变与所有状态媒介维度(包括温度,压力和物种浓度)的传统数值方法非常吻合。此外,点火延迟时间差异在1%之内。同时,与HMTS和VODE方法相比,CPU时间分别减少了20倍和200倍。当前的工作证明了将深度学习算法应用于化学动力学和燃烧建模的巨大潜力。

Developing efficient and accurate algorithms for chemistry integration is a challenging task due to its strong stiffness and high dimensionality. The current work presents a deep learning-based numerical method called DeepCombustion0.0 to solve stiff ordinary differential equation systems. The homogeneous autoignition of DME/air mixture, including 54 species, is adopted as an example to illustrate the validity and accuracy of the algorithm. The training and testing datasets cover a wide range of temperature, pressure, and mixture conditions between 750-1200 K, 30-50 atm, and equivalence ratio = 0.7-1.5. Both the first-stage low-temperature ignition (LTI) and the second-stage high-temperature ignition (HTI) are considered. The methodology highlights the importance of the adaptive data sampling techniques, power transform preprocessing, and binary deep neural network (DNN) design. By using the adaptive random samplings and appropriate power transforms, smooth submanifolds in the state vector phase space are observed, on which two three-layer DNNs can be appropriately trained. The neural networks are end-to-end, which predict temporal gradients of the state vectors directly. The results show that temporal evolutions predicted by DNN agree well with traditional numerical methods in all state vector dimensions, including temperature, pressure, and species concentrations. Besides, the ignition delay time differences are within 1%. At the same time, the CPU time is reduced by more than 20 times and 200 times compared with the HMTS and VODE method, respectively. The current work demonstrates the enormous potential of applying the deep learning algorithm in chemical kinetics and combustion modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源