论文标题
自主:迈向自主机器学习的集成框架
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
论文作者
论文摘要
在过去的十年中,在机器学习中自动化高级流程(ML)的长期努力已升至主流突出,这受到优化技术的进步及其对选择ML模型/算法的影响的刺激。这种驱动器的核心是设计一种计算系统的吸引力,该计算系统既可以发现并部署高性能解决方案,以解决最小的人类互动的任意ML问题。除此之外,一个甚至更高的目标是追求自主权,该目标描述了系统在不断变化的上下文一生中独立调整ML解决方案的能力。但是,如果没有更广泛的各种机制和理论框架的更广泛的综合,目前,这些野心就不太可能以强大的方式实现,而这些野心仍在广泛地合成各种机制和理论框架上,而这些框架目前仍散布在众多研究线程中。因此,这篇综述旨在激励对构成自动/自动ML系统的构成的更广泛的观点,并考虑如何最好地合并这些元素。在此过程中,我们调查了以下研究领域的发展:超参数优化,多组分模型,神经体系结构搜索,自动化功能工程,元学习,多级结合,多级结合,动态适应,多目标评估,资源约束,灵活的用户参与以及普遍的原理。我们还在整个评论中开发了一个概念框架,并由每个主题增强,以说明将高级机制融合到自主ML系统中的一种可能方法。最终,我们得出的结论是,建筑融合的概念值得更多讨论,没有此,自动化的ML领域风险扼杀其技术优势和一般吸收。
Over the last decade, the long-running endeavour to automate high-level processes in machine learning (ML) has risen to mainstream prominence, stimulated by advances in optimisation techniques and their impact on selecting ML models/algorithms. Central to this drive is the appeal of engineering a computational system that both discovers and deploys high-performance solutions to arbitrary ML problems with minimal human interaction. Beyond this, an even loftier goal is the pursuit of autonomy, which describes the capability of the system to independently adjust an ML solution over a lifetime of changing contexts. However, these ambitions are unlikely to be achieved in a robust manner without the broader synthesis of various mechanisms and theoretical frameworks, which, at the present time, remain scattered across numerous research threads. Accordingly, this review seeks to motivate a more expansive perspective on what constitutes an automated/autonomous ML system, alongside consideration of how best to consolidate those elements. In doing so, we survey developments in the following research areas: hyperparameter optimisation, multi-component models, neural architecture search, automated feature engineering, meta-learning, multi-level ensembling, dynamic adaptation, multi-objective evaluation, resource constraints, flexible user involvement, and the principles of generalisation. We also develop a conceptual framework throughout the review, augmented by each topic, to illustrate one possible way of fusing high-level mechanisms into an autonomous ML system. Ultimately, we conclude that the notion of architectural integration deserves more discussion, without which the field of automated ML risks stifling both its technical advantages and general uptake.