论文标题
在真实的图像denoising中提高渠道的关注:子频段金字塔的关注
Towards Boosting the Channel Attention in Real Image Denoising : Sub-band Pyramid Attention
论文作者
论文摘要
人工神经网络(ANN)中的卷积层同样处理通道特征,而没有特征选择灵活性。在使用ANN进行图像在具有未知噪声分布的现实世界应用中(尤其是具有可学习模式的结构化噪声)时,建模信息性功能可以大大提高性能。在真实图像中的通道注意力方法在特征通道之间利用依赖性,因此是频率组件过滤机制。现有的频道注意模块通常使用全局静态作为描述符来学习通道间的相关性。该方法认为,在学习代表性系数方面效率低下,可以在频率水平上重新缩放通道。本文提出了一种基于小波子频带金字塔的新型子频段金字塔注意(SPA),以更细粒度的方式重新校准提取特征的频率成分。我们在旨在真实图像denoising的网络上配备了水疗块。实验结果表明,所提出的方法比基准天真的通道注意块取得了显着的改进。此外,我们的结果表明,金字塔水平如何影响水疗块的性能,并表现出对水疗块的有利的概括能力。
Convolutional layers in Artificial Neural Networks (ANN) treat the channel features equally without feature selection flexibility. While using ANNs for image denoising in real-world applications with unknown noise distributions, particularly structured noise with learnable patterns, modeling informative features can substantially boost the performance. Channel attention methods in real image denoising tasks exploit dependencies between the feature channels, hence being a frequency component filtering mechanism. Existing channel attention modules typically use global statics as descriptors to learn the inter-channel correlations. This method deems inefficient at learning representative coefficients for re-scaling the channels in frequency level. This paper proposes a novel Sub-band Pyramid Attention (SPA) based on wavelet sub-band pyramid to recalibrate the frequency components of the extracted features in a more fine-grained fashion. We equip the SPA blocks on a network designed for real image denoising. Experimental results show that the proposed method achieves a remarkable improvement than the benchmark naive channel attention block. Furthermore, our results show how the pyramid level affects the performance of the SPA blocks and exhibits favorable generalization capability for the SPA blocks.