论文标题

量子计算中传感器辅助的断层缓解

Sensor-assisted fault mitigation in quantum computation

论文作者

Orrell, John L., Loer, Ben

论文摘要

我们提出了一种通过使用靠近物理量子位的传感器来帮助减轻量子计算中故障的方法。具体而言,我们考虑使用托管超导量子台的硅底物共同置换的过渡边缘传感器来监测电离辐射中的能量注入能量,这已证明会增加Transmon矩形量子的脱碳。我们从这两个物理设备概念中概括,并探索共同确定的传感器的潜在优势,以帮助减轻量子计算中的故障。在最简单的方案中,共同确定的传感器有益地有助于排斥可能受环境干扰影响的计算。研究潜在的计算优势进一步需要开发量子误差校正标准公式的扩展。在标准三分(位纤维量子误差校正代码)的特定情况下,我们表明,鉴于每位量度的总体误差概率为20%,大约90%的重复计算尝试是可纠正的。但是,当传感器可检测错误占整体误差概率的45%时,与独立量子台的共同定位传感器的使用唯一相关的传感器会将正确的最终计算的比例提高到96%,而拒绝重复计算尝试的7%。

We propose a method to assist fault mitigation in quantum computation through the use of sensors co-located near physical qubits. Specifically, we consider using transition edge sensors co-located on silicon substrates hosting superconducting qubits to monitor for energy injection from ionizing radiation, which has been demonstrated to increase decoherence in transmon qubits. We generalize from these two physical device concepts and explore the potential advantages of co-located sensors to assist fault mitigation in quantum computation. In the simplest scheme, co-located sensors beneficially assist rejection of calculations potentially affected by environmental disturbances. Investigating the potential computational advantage further required development of an extension to the standard formulation of quantum error correction. In a specific case of the standard three-qubit, bit-flip quantum error correction code, we show that given a 20% overall error probability per qubit, approximately 90% of repeated calculation attempts are correctable. However, when sensor-detectable errors account for 45% of overall error probability, the use of co-located sensors uniquely associated with independent qubits boosts the fraction of correct final-state calculations to 96%, at the cost of rejecting 7% of repeated calculation attempts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源