论文标题

可扩展的光学学习操作员

Scalable Optical Learning Operator

论文作者

Teğin, Uğur, Yıldırım, Mustafa, Oğuz, İlker, Moser, Christophe, Psaltis, Demetri

论文摘要

当今的重型机器学习任务是由大型数据集助长的。计算是用饥饿的处理器执行的,其性能最终受到对内存的数据传输的限制。光学是通信和处理信息的有力手段之一,并且目前对实现高速计算的光学信息处理具有强烈的兴趣。在这里,我们介绍并在实验上演示了一个基于多模纤维中时空效应的光学计算框架,用于从分类COVID-19 X射线肺图像和语音识别到从面部图像中预测年龄的一系列学习任务。提出的框架克服了现有系统的能量扩展问题,而不会损害速度。我们利用空间模式的同时,线性和非线性相互作用作为计算引擎。我们在数值和实验上展示了该方法执行几个不同任务的能力,其准确性与数字实现相当。

Today's heavy machine learning tasks are fueled by large datasets. Computing is performed with power hungry processors whose performance is ultimately limited by the data transfer to and from memory. Optics is one of the powerful means of communicating and processing information and there is intense current interest in optical information processing for realizing high-speed computations. Here we present and experimentally demonstrate an optical computing framework based on spatiotemporal effects in multimode fibers for a range of learning tasks from classifying COVID-19 X-ray lung images and speech recognition to predicting age from face images. The presented framework overcomes the energy scaling problem of existing systems without compromising speed. We leveraged simultaneous, linear, and nonlinear interaction of spatial modes as a computation engine. We numerically and experimentally showed the ability of the method to execute several different tasks with accuracy comparable to a digital implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源