论文标题

dagmapper:通过发现车道拓扑来学习映射

DAGMapper: Learning to Map by Discovering Lane Topology

论文作者

Homayounfar, Namdar, Ma, Wei-Chiu, Liang, Justin, Wu, Xinyu, Fan, Jack, Urtasun, Raquel

论文摘要

扩展自动驾驶的基本挑战之一是能够以低成本创建准确的高清地图(HD地图)。当前试图自动化此过程的尝试通常集中在简单的场景上,每帧估算独立地图,或者没有现代自动驾驶车辆所需的精度水平。相比之下,在本文中,我们着重于绘制复杂高速公路的车道边界,其中许多车道都包含由于叉和合并而导致的拓扑变化。为了实现这一目标,我们将问题提出为定向无环图形模型(DAG)的推论,其中图形的节点编码了车道边界的局部区域的几何和拓扑特性。由于我们不知道该车道的拓扑,因此我们还推断了每个区域的DAG拓扑(即节点和边缘)。我们证明了我们在两个不同州的两条主要北美高速公路上的方法的有效性,并表现出高精度和回忆以及89%的正确拓扑。

One of the fundamental challenges to scale self-driving is being able to create accurate high definition maps (HD maps) with low cost. Current attempts to automate this process typically focus on simple scenarios, estimate independent maps per frame or do not have the level of precision required by modern self driving vehicles. In contrast, in this paper we focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges. Towards this goal, we formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries. Since we do not know a priori the topology of the lanes, we also infer the DAG topology (i.e., nodes and edges) for each region. We demonstrate the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源