论文标题

超质形型贝尔林类型的扩展

Ultraholomorphic sectorial extensions of Beurling type

论文作者

Nenning, David Nicolas, Rainer, Armin, Schindl, Gerhard

论文摘要

我们证明了由重量函数定义的,具有规律性丧失的重量函数定义的超质形函数类别的部门延伸定理。这些证明是基于第二作者而基于减少引理的,该作者允许从romieu案中提取Beurling,该案例最近由Jiménez-Garrido,Sanz,Sanz和第三作者对待。为了控制扩展的开放,我们使用(混合)生长指数和重量函数的准二元分析顺序。结果,我们获得了由权重序列定义的类的相应扩展结果。此外,我们提供有关连续线性扩展运算符的存在的信息。

We prove sectorial extension theorems for ultraholomorphic function classes of Beurling type defined by weight functions with a controlled loss of regularity. The proofs are based on a reduction lemma, due to the second author, which allows to extract the Beurling from the Roumieu case, which was treated recently by Jiménez-Garrido, Sanz, and the third author. In order to have control on the opening of the sectors, where the extensions exist, we use the (mixed) growth index and the order of quasianalyticity of weight functions. As a consequence we obtain corresponding extension results for classes defined by weight sequences. Additionally, we give information on the existence of continuous linear extension operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源