论文标题

$ p $ - 斯特里克促销和$ b $结合的rowmotion,并申请了多种口味的tableaux

$P$-strict promotion and $B$-bounded rowmotion, with applications to tableaux of many flavors

论文作者

Bernstein, Joseph, Striker, Jessica, Vorland, Corey

论文摘要

我们将有限POSET P定义为Semistandard Young Tableaux的概括,并表明对这些物体的促进是在均等的射击中,并在B-Bon of相关POSET Q的Q-parts上进行了拨动动作。我们将此结果应用于标记的tableaux,gelfand-tsetlin模式和象征性tableaux,获得了新的环状筛分和同源性猜想。我们还可以使用Bender-Knuth和Jeu de Taquin的观点来表明P-Strict促销可以等效地定义。

We define P-strict labelings for a finite poset P as a generalization of semistandard Young tableaux and show that promotion on these objects is in equivariant bijection with a toggle action on B-bounded Q-partitions of an associated poset Q. In many nice cases, this toggle action is conjugate to rowmotion. We apply this result to flagged tableaux, Gelfand-Tsetlin patterns, and symplectic tableaux, obtaining new cyclic sieving and homomesy conjectures. We also show P-strict promotion can be equivalently defined using Bender-Knuth and jeu de taquin perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源