论文标题
顶点代数和Costello-Gwilliam分解代数
Vertex Algebras and Costello-Gwilliam Factorization Algebras
论文作者
论文摘要
顶点代数和分解代数是手性综合场理论的两种方法。 Costello和Gwilliam描述了满足某些假设的复数平面上的每个全体形态分解代数如何产生Z级的顶点代数。他们构建了一些手性结合理论作为分解代数的模型。我们将分解代数附加到每个Z级的顶点代数。
Vertex algebras and factorization algebras are two approaches to chiral conformal field theory. Costello and Gwilliam describe how every holomorphic factorization algebra on the plane of complex numbers satisfying certain assumptions gives rise to a Z-graded vertex algebra. They construct some models of chiral conformal theory as factorization algebras. We attach a factorization algebra to every Z-graded vertex algebra.