论文标题
4D心肌速度映射心脏MR的自动多通道分段
Automated Multi-Channel Segmentation for the 4D Myocardial Velocity Mapping Cardiac MR
论文作者
论文摘要
四维(4D)左心室心肌速度映射(MVM)是一种心脏磁共振(CMR)技术,可以在三个正交方向上评估心脏运动。心肌的准确和可重复的描述对于准确分析峰值收缩压和舒张心肌速度至关重要。除了常规可用的幅度CMR数据外,4D MVM还获得了三个用于生成速度图的速度编码相位数据集。这些可用于促进和改善心肌描述。基于深度学习在医学图像处理中的成功,我们提出了一个新型的自动化框架,通过跨渠道融合,以及基于注意的信息模块和基于形状的后处理,可以改善这些CMR多渠道数据(大小和相位)的标准基于U-NET的方法,以实现上交和内核量的准确划定。为了评估结果,我们采用了广泛使用的骰子评分以及心肌纵向峰值的定量。我们经过多通道数据培训的拟议网络与接受单渠道数据训练的标准基于U-NET的网络相比显示出增强的性能。根据结果,我们的方法为4D MVM CMR数据的多通道图像分析的设计和应用提供了令人信服的证据。
Four-dimensional (4D) left ventricular myocardial velocity mapping (MVM) is a cardiac magnetic resonance (CMR) technique that allows assessment of cardiac motion in three orthogonal directions. Accurate and reproducible delineation of the myocardium is crucial for accurate analysis of peak systolic and diastolic myocardial velocities. In addition to the conventionally available magnitude CMR data, 4D MVM also acquires three velocity-encoded phase datasets which are used to generate velocity maps. These can be used to facilitate and improve myocardial delineation. Based on the success of deep learning in medical image processing, we propose a novel automated framework that improves the standard U-Net based methods on these CMR multi-channel data (magnitude and phase) by cross-channel fusion with attention module and shape information based post-processing to achieve accurate delineation of both epicardium and endocardium contours. To evaluate the results, we employ the widely used Dice scores and the quantification of myocardial longitudinal peak velocities. Our proposed network trained with multi-channel data shows enhanced performance compared to standard U-Net based networks trained with single-channel data. Based on the results, our method provides compelling evidence for the design and application for the multi-channel image analysis of the 4D MVM CMR data.