论文标题
超几何方程的贝蒂结构
Betti structures of hypergeometric equations
论文作者
论文摘要
我们研究了汇合高几何方程的溶液复合物中的贝蒂结构。我们使用增强的Ind-Shaves和D'Agnolo-Kashiwara的不规则Riemann-Hilbert的框架。主要结果是一个组理论标准,可确保在复数的某些子场上定义此类系统的增强解决方案。该证明使用对某些劳伦(Laurent)多项式的指数扭曲的高斯 - 曼宁系统的描述。
We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann-Hilbert correspondence of D'Agnolo-Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions of such systems are defined over certain subfields of the complex numbers. The proof uses a description of the hypergeometric systems as exponentially twisted Gauss-Manin systems of certain Laurent polynomials.