论文标题

袋稠度的结构和复杂性

Structure and Complexity of Bag Consistency

论文作者

Atserias, Albert, Kolaitis, Phokion G.

论文摘要

自相关数据库的早期以来,已经意识到,无环超图会引起具有理想的结构和算法属性的数据库模式。在一份古典论文中,Beeri,Fagin,Maier和Yannakakis建立了几种不同的无性表征。他们特别表明,当且仅当该架构上的关系的局部到全球一致性属性时,架构的属性集构成了一个环形超图,这意味着每个架构上的成对一致关系集合在全球范围内都是一致的。即使现实生活中的数据库由袋子(多组)组成,但尚未研究袋子的当地一致性与全球一致性之间的相互作用。我们在这里开始了这样的研究,首先表明,当且仅当该模式上的local-to全球一致性属性时,架构的属性集构成了无环超图。此后,我们通过分析包包全球一致性问题的计算复杂性来探索全球一致性的算法方面:给定包包的集合,这些袋子在全球范围内是否一致?我们表明,即使模式是输入的一部分,这个问题也在NP中。然后,我们为固定模式建立以下二分法定理:如果模式是无环的,则可以在多项式时间内解决袋子的全球一致性问题,而如果模式是周期性的,则袋子的全球一致性问题是NP完整的。后者的结果与关系的状况鲜明对比,在这种情况下,对于每个固定模式,关系的全球一致性问题在多项式时期都可以解决。

Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a by-now classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源