论文标题
使用游离电子对量子状态的超快非破坏性测量
Ultrafast non-destructive measurement of the quantum state of light using free electrons
论文作者
论文摘要
自量子光学元件的诞生以来,非经典光的量子状态的测量对于该领域的发展至关重要。迄今为止,传统的检测器,例如光电培养基,雪崩光电二极管和超导纳米线,都依赖于它们的核心,这是对绑定的电子的线性激发,对检测产生了基本的限制。相反,在量子光学的背景下,自由电子与光的相互作用是高度非线性的,并提供了令人兴奋的可能性。促进该方向的第一个实验是在过去十年中出现的,这是光子诱导的近场电子显微镜(Pinem)的一部分,其中游离电子能够具有高阶多光子吸收和发射。在这里,我们建议使用自由电子对完整量子状态的量子光检测。我们展示了电子与量子光相互作用之前和之后的精确控制能够提取光子统计量并使用Pinem实施完整的量子状态层析成像。该技术可以达到近心分辨率的分辨率,测量任何程度的时间连贯性(例如G(1),G(2)),并同时检测每个电子的时间连贯性。重要的是,电子与光的相互作用是无损的,从而使光子状态(通过相互作用修改)完整,这在概念上与常规检测器不同。通过使用多个电子的脉冲,我们设想了Pinem量子检测器如何实现量子光的完整状态的单发测量,即使对于不可再生的发射事件也是如此。总的来说,我们的作品铺平了采用新颖的光电探测器的方式,这些光电探测器利用了电子光相互作用的超快持续时间,高非线性和非破坏性性质。
Since the birth of quantum optics, the measurement of quantum states of nonclassical light has been of tremendous importance for advancement in the field. To date, conventional detectors such as photomultipliers, avalanche photodiodes, and superconducting nanowires, all rely at their core on linear excitation of bound electrons with light, posing fundamental restrictions on the detection. In contrast, the interaction of free electrons with light in the context of quantum optics is highly nonlinear and offers exciting possibilities. The first experiments that promoted this direction appeared over the past decade as part of photon-induced nearfield electron microscopy (PINEM), wherein free electrons are capable of high-order multi-photon absorption and emission. Here we propose using free electrons for quantum-optical detection of the complete quantum state of light. We show how the precise control of the electron before and after its interaction with quantum light enables to extract the photon statistics and implement full quantum state tomography using PINEM. This technique can reach sub-attosecond time resolutions, measure temporal coherence of any degree (e.g., g(1), g(2)), and simultaneously detect large numbers of photons with each electron. Importantly, the interaction of the electron with light is non-destructive, thereby leaving the photonic state (modified by the interaction) intact, which is conceptually different from conventional detectors. By using a pulse of multiple electrons, we envision how PINEM quantum detectors could achieve a single-shot measurement of the complete state of quantum light, even for non-reproducible emission events. Altogether, our work paves the way to novel kinds of photodetectors that utilize the ultrafast duration, high nonlinearity, and non-destructive nature of electron-light interactions.