论文标题

拟态的尸体谎言代数

The holonomy Lie algebra of a matroid

论文作者

Löfwall, Clas

论文摘要

我们将从一开始,并定义一个矩阵及其Orlik-Solomon代数和尸体词代数,但首先我们从拓扑和同一个同胞中提供了一些背景。 A(中央)超平面布置是在R,C甚至有限场上的有限维矢量空间中的一个有限数量的编码符号子空间。是超级平面融合的空间X具有有趣的特性。但是,如果您认为r^n的共同体相当微不足道,则只有一个H^0,因为X是违约集的不连接结合。但是计算| h^0 |并不是一项琐碎的任务。这样做的方法是考虑超平面的交点晶格并计算其Möbius功能。结果是组件的数量是Möbius函数的绝对值的总和(Zaslavsky 1975)。

We will start from the beginning and define a matroid and its Orlik-Solomon algebra and holonomy Lie algebra, but first we give some background from topology and cohomology. A (central) hyperplane arrangement is a finite number of subspaces of codimension one in a finite dimensional vector space over R, C or even finite fields. The space X which is the complement of the union of the hyperplanes has interesting properties. If you consider R^n the cohomology is however rather trivial, there is just an H^0, since X is a disjoint union of contractible sets. But it is not a trivial task to compute |H^0|. The way to do it is to consider the intersection lattice of the hyperplanes and compute its Möbius function. The result is that the number of components is the sum of the absolut values of the Möbius function (Zaslavsky 1975).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源