论文标题
可接受性最大化
Acceptability maximization
论文作者
论文摘要
本文的目的是通过使用连贯的可接受性指数(CAI)作为衡量投资组合绩效的工具来研究最佳投资问题。我们将此问题称为可接受性最大化。首先,我们研究了一个周期(静态)情况,并提出了一种数值算法,该算法通过一系列风险最小化问题近似于原始问题。结果应用于几个重要的CAI,例如收益与损失比率,风险调整后的资本回报率和基于风险的CAI。在本文的第二部分中,我们研究了离散时间动态设置中的可接受性最大化。使用动态连贯的风险度量(DCRM)的家族来使用CAI的稳健表示,我们建立了一个有趣的二分法:如果相应的DCRM家族具有递归(即强烈的时间一致),并假设市场模型的某些递归结构,然后将最大化问题降低到一个周期的可接受性和最大程度的可接受性和最大程度的范围,并且是一个不断的可接受性,并且跨越了所有的跨度。另一方面,如果DCRM的家族不是递归的,通常是这种情况,那么通常的最大化问题是时间不一致的随机控制问题,类似于经典的均值差异标准。为了克服这种形式的时间不一致,我们适应了我们最近在\ cite {kovacovarudloff2019}中提出的设置的贝尔曼原理应用于两个特定的动态CAI-动态风险风险改装的资本收益回报率和动态增益比率。通过数值示例说明了所获得的理论结果,这些示例尤其包括计算中间平均风险有效边界的计算。
The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellman's principle recently proposed in \cite{KovacovaRudloff2019} applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.