论文标题

基于数据损失的协方差矩阵估计

Covariance matrix estimation under data-based loss

论文作者

Haddouche, Anis M., Fourdrinier, Dominique, Mezoued, Fatiha

论文摘要

在本文中,我们考虑了估计多元线性回归模型的$ p \ times p $ scale矩阵$σ$ $ y = x \,β+ \ mathcal {e} \,当观察到的矩阵$ y $ y属于大型椭圆形的对称分布时,$。在此模型的规范表格$(z^t u^t)^t $之后,通过基于数据的损失tr tr $(s^{+}σ\ \,(σ^{ - σ^{ - 1}}} \hatς-i_p) - $ s^{+} $是其摩尔 - 芬罗倒数。我们为通常的估计器$ a \,s $提供替代性估计器,其中$ a $是一个正常数,它具有较小的相关风险。与通常的二次损失tr $(σ^{ - 1} \hatς -i_p)^2 $相比,我们获得了更大的估计器和更广泛的椭圆形分布类别。一项数值研究说明了理论。

In this paper, we consider the problem of estimating the $p\times p$ scale matrix $Σ$ of a multivariate linear regression model $Y=X\,β+ \mathcal{E}\,$ when the distribution of the observed matrix $Y$ belongs to a large class of elliptically symmetric distributions. After deriving the canonical form $(Z^T U^T)^T$ of this model, any estimator $\hat{ Σ}$ of $Σ$ is assessed through the data-based loss tr$(S^{+}Σ\, (Σ^{-1}\hatΣ - I_p)^2 )\,$ where $S=U^T U$ is the sample covariance matrix and $S^{+}$ is its Moore-Penrose inverse. We provide alternative estimators to the usual estimators $a\,S$, where $a$ is a positive constant, which present smaller associated risk. Compared to the usual quadratic loss tr$(Σ^{-1}\hatΣ - I_p)^2$, we obtain a larger class of estimators and a wider class of elliptical distributions for which such an improvement occurs. A numerical study illustrates the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源