论文标题

ganterfactual-使用生成对抗性学习的医学非专家的反事实解释

GANterfactual - Counterfactual Explanations for Medical Non-Experts using Generative Adversarial Learning

论文作者

Mertes, Silvan, Huber, Tobias, Weitz, Katharina, Heimerl, Alexander, André, Elisabeth

论文摘要

随着机器学习的持续兴起,对解释人工智能系统做出的决策的方法的需求正成为一个越来越重要的话题。特别是对于图像分类任务,许多最先进的工具来解释此类分类器依赖于输入数据的重要领域的视觉突出显示。相反,反事实说明系统试图通过以某种方式修改输入图像来实现反事实推理,从而使分类器会做出不同的预测。通过这样做,反事实说明系统的用户配备了完全不同的解释信息。但是,对于图像分类器生成现实的反事实解释的方法仍然很少见。尤其是在医疗环境中,相关信息通常由纹理和结构信息组成,高质量的反事实图像有可能对决策过程有有意义的见解。在这项工作中,我们提出了ganterfactual,这是一种基于对抗性图像到图像翻译技术生成此类反事实图像解释的方法。此外,我们进行了一项用户研究,以评估我们的方法在示例性的医学用例中。我们的结果表明,在选定的医学用例中,反事实解释与两个与显着性图的最先进的系统相比,在心理模型,解释满意度,信任,情感和自我效能下,取得了更好的结果,即LIME和LRP。

With the ongoing rise of machine learning, the need for methods for explaining decisions made by artificial intelligence systems is becoming a more and more important topic. Especially for image classification tasks, many state-of-the-art tools to explain such classifiers rely on visual highlighting of important areas of the input data. Contrary, counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image in a way such that the classifier would have made a different prediction. By doing so, the users of counterfactual explanation systems are equipped with a completely different kind of explanatory information. However, methods for generating realistic counterfactual explanations for image classifiers are still rare. Especially in medical contexts, where relevant information often consists of textural and structural information, high-quality counterfactual images have the potential to give meaningful insights into decision processes. In this work, we present GANterfactual, an approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques. Additionally, we conduct a user study to evaluate our approach in an exemplary medical use case. Our results show that, in the chosen medical use-case, counterfactual explanations lead to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the-art systems that work with saliency maps, namely LIME and LRP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源