论文标题
背景字段方法中具有复合字段的非亚伯仪理论
Non-Abelian gauge theories with composite fields in the background field method
论文作者
论文摘要
在背景字段方法中检查了具有复合字段的非亚伯仪理论。引入了Yangs的Green功能的函数 - 带有复合和背景字段的Mills理论,包括Vertex Green功能的生成功能(有效的动作)。获得了相应的病房身份,并研究了规格依赖性问题。根据复合材料和背景字段的不同,根据nilpotent操作员发现了有效动作的规格变化。从选择量规修复进行有效行动的量规固定的独立性。在对病房身份和量规依赖性的研究中,在系统的基础上引入和使用了有限的磁场依赖性BRST变换。一方面,这涉及考虑(修改的)病房身份,其依赖场的抗强制性参数,这也取决于非平凡的背景。另一方面,根据规格范围的有限变化,研究了规格依赖性的问题。 Gribov-Zwanziger理论(包括局部BRST-Invariant Horizon的情况)以及Volovich-katanaev模型的二维引力模型,将复合和背景字段介绍给非亚伯仪理论的联合引入和背景领域的概念。
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Green's functions for a Yang--Mills theory with composite and background fields are introduced, including the generating functional of vertex Green's functions (effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator depending on the composite and background fields. On-shell independence from the choice of gauge fixing for the effective action is established. In the study of the Ward identities and gauge dependence, finite field-dependent BRST transformations with a background field are introduced and utilized on a systematic basis. On the one hand, this involves the consideration of (modified) Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial background.On the other hand, the issue of gauge dependence is studied with reference to a finite variation of the gauge Fermion. The concept of a joint introduction of composite and background fields to non-Abelian gauge theories is exemplified by the Gribov--Zwanziger theory, including the case of a local BRST-invariant horizon, and by the Volovich--Katanaev model of two-dimensional gravity with dynamical torsion.