论文标题
指导风格:属性知识指导样式操纵语义面孔编辑
GuidedStyle: Attribute Knowledge Guided Style Manipulation for Semantic Face Editing
论文作者
论文摘要
尽管通过无条件生成的对抗网络(GAN)综合了高质量和视觉上逼真的面部图像,但仍缺乏对生成过程的控制,以实现语义面部编辑。此外,在编辑目标属性时,保持其他面部信息仍然不受影响,这仍然非常具有挑战性。在本文中,我们提出了一个新颖的学习框架,称为LeidedStyle,以通过知识网络指导图像生成过程来实现Sentical Face编辑。此外,我们允许在Stylegan Generator中的注意机制自适应地选择单层进行样式操作。结果,我们的方法能够沿着各种属性执行脱离和可控的编辑,包括微笑,眼镜,性别,胡须和头发颜色。定性和定量结果都证明了我们方法的优越性,而不是其他竞争性的语义面部编辑方法。此外,我们表明我们的模型也可以应用于不同类型的真实和艺术面部编辑,表现出强大的概括能力。
Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there still lacks of control over the generation process in order to achieve semantic face editing. In addition, it remains very challenging to maintain other face information untouched while editing the target attributes. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache and hair color. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.