论文标题
重新访问$ su(n)$ $ $ \ natcal {n} = 2 $量规理论的多回合点
Revisiting the Multi-Monopole Point of $SU(N)$ $\mathcal{N} = 2$ Gauge Theory in Four Dimensions
论文作者
论文摘要
在适用于软超对称性破裂的应用中,我们重新审视了Seiberg-witten解决方案在纯$ su(N)$ $ $ $ \ MATHCAL {n} = 2 $ GAUGE理论的库仑分支上的多孔子分支上的扩展。此时,$ n-1 $相互局部磁性单极同时变得无质量,在合适的双重性框架中,量规耦合对数为零。我们通过调整先前由D'Hoker和Phong引入的方法来明确计算从Seiberg-Witten解决方案运行的对数的领先阈值校正。我们将计算与文献中的现有结果进行比较;这包括特定于$ su(2)$(2)$和$ su(3)$量规理论的结果,道格拉斯和Shenker的大$ n $结果以及通过吸引可集成的系统或拓扑结构而获得的结果。我们发现广泛的共识,同时还阐明了一些挥之不去的矛盾之处。最后,我们将道格拉斯和申克的结果明确扩展到有限的$ n $,并与我们的第一个计算找到了确切的协议。
Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure $SU(N)$ $\mathcal{N}=2$ gauge theory in four dimensions. At this point $N-1$ mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by D'Hoker and Phong. We compare our computation to existing results in the literature; this includes results specific to $SU(2)$ and $SU(3)$ gauge theories, the large-$N$ results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite $N$, finding exact agreement with our first calculation.