论文标题

NetReact:网络摘要的互动学习

NetReAct: Interactive Learning for Network Summarization

论文作者

Amiri, Sorour E., Adhikari, Bijaya, Wenskovitch, John, Rodriguez, Alexander, Dowling, Michelle, North, Chris, Prakash, B. Aditya

论文摘要

生成有用的网络摘要是一个充满挑战和重要的问题,例如感官,可视化和压缩。但是,在该空间中,当前的大多数工作在生成摘要时都没有考虑到人类的反馈。考虑一个情报分析方案,分析师正在探索文档之间的相似性网络。分析师可以通过迭代反馈(例如关闭或移动文档(“节点”)。我们如何使用此反馈来提高网络摘要质量?在本文中,我们提出了一种新型的交互式网络汇总算法NetReact,该算法支持文本语料库引起的网络的可视化以执行感官。 NetReact将人类的反馈与加强学习结合在一起,以总结和可视化文档网络。使用来自两个数据集的方案,我们展示了NetReact如何成功地生成高质量的摘要和可视化效果,这些摘要和可视化效果比其他非平凡的基线更好地揭示了隐藏的模式。

Generating useful network summaries is a challenging and important problem with several applications like sensemaking, visualization, and compression. However, most of the current work in this space do not take human feedback into account while generating summaries. Consider an intelligence analysis scenario, where the analyst is exploring a similarity network between documents. The analyst can express her agreement/disagreement with the visualization of the network summary via iterative feedback, e.g. closing or moving documents ("nodes") together. How can we use this feedback to improve the network summary quality? In this paper, we present NetReAct, a novel interactive network summarization algorithm which supports the visualization of networks induced by text corpora to perform sensemaking. NetReAct incorporates human feedback with reinforcement learning to summarize and visualize document networks. Using scenarios from two datasets, we show how NetReAct is successful in generating high-quality summaries and visualizations that reveal hidden patterns better than other non-trivial baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源