论文标题

通过混合构成线性优化有序的反事实说明

Ordered Counterfactual Explanation by Mixed-Integer Linear Optimization

论文作者

Kanamori, Kentaro, Takagi, Takuya, Kobayashi, Ken, Ike, Yuichi, Uemura, Kento, Arimura, Hiroki

论文摘要

机器学习模型的事后解释方法已广泛用于支持决策。一种流行的方法之一是反事实解释(CE),也称为可行的追索权,它为用户提供了特征的扰动向量,从而改变了预测结果。给定扰动向量,用户可以将其解释为用于获得所需决策结果的“动作”。但是,实际上,仅显示扰动向量通常不足以执行操作。原因是,如果特征之间存在不对称的相互作用,例如因果关系,则该动作的总成本有望取决于变化特征的顺序。因此,除了扰动向量外,还需要实用的CE方法提供适当的更改功能的顺序。为此,我们提出了一个新框架,称为有序反事实说明(ORDCE)。我们引入了一个新的目标函数,该功能根据特征交互评估一对动作和顺序。为了提取最佳对,我们提出了一种与目标函数的混合企业线性优化方法。实际数据集上的数值实验证明了与无序的CE方法相比,我们的订单的有效性。

Post-hoc explanation methods for machine learning models have been widely used to support decision-making. One of the popular methods is Counterfactual Explanation (CE), also known as Actionable Recourse, which provides a user with a perturbation vector of features that alters the prediction result. Given a perturbation vector, a user can interpret it as an "action" for obtaining one's desired decision result. In practice, however, showing only a perturbation vector is often insufficient for users to execute the action. The reason is that if there is an asymmetric interaction among features, such as causality, the total cost of the action is expected to depend on the order of changing features. Therefore, practical CE methods are required to provide an appropriate order of changing features in addition to a perturbation vector. For this purpose, we propose a new framework called Ordered Counterfactual Explanation (OrdCE). We introduce a new objective function that evaluates a pair of an action and an order based on feature interaction. To extract an optimal pair, we propose a mixed-integer linear optimization approach with our objective function. Numerical experiments on real datasets demonstrated the effectiveness of our OrdCE in comparison with unordered CE methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源