论文标题
使用接近度的多阶段随机整数编程的有效顺序和并行算法
Efficient sequential and parallel algorithms for multistage stochastic integer programming using proximity
论文作者
论文摘要
We consider the problem of solving integer programs of the form $\min \{\,c^\intercal x\ \colon\ Ax=b, x\geq 0\}$, where $A$ is a multistage stochastic matrix in the following sense: the primal treedepth of $A$ is bounded by a parameter $d$, which means that the columns of $A$ can be organized into a rooted forest深度最多$ d $,因此,森林中不受祖先/后代关系限制的列在同一行中没有非零的条目。我们给出了一种算法,该算法在固定参数时间$ f(d,\ | a \ | _ {\ infty})\ cdot n \ log^{o(2^d)n $中解决此问题,其中$ f $是可计算的函数,$ n $是$ a $ a $ a $的行。该算法在强模型中起作用,其中运行时间仅在输入数字上测量单元算术操作,并且不取决于其比特长度。这是多阶段随机整数编程的第一种FPT算法,可以在强大的意义上实现几乎线性的运行时间。对于两阶段随机整数程序,我们的算法及时工作$ 2^{(2 \ | a \ | _ \ infty)^{o(r(r+s)}} \ cdot n \ log log^{o(rs)} n $。该算法也可以并行化:我们在婴儿车模型中提供了一个实现,该实现时间$ f(d,\ | a \ | _ {\ infty})\ cdot \ cdot \ log \ log^{o(2^d)} n $使用$ n $处理器。 我们算法中的主要概念成分是多阶段随机整数程序的新邻近结果。我们证明,如果我们考虑一个整数程序$ p $,则说使用约束矩阵$ a $,那么对于每一个最佳解决方案,对于$ p $的线性放松的每个最佳解决方案就会有一个最佳(积分)解决$ p $的解决方案,在$ \ ell _ {\ ell _ {\ ell _ {\ elftty} $ - normapt of printial $ \ y firtif $ _________________________________________ $ a $。在实现这一结果的途中,我们证明了Klein在多阶段随机整数程序中的结构结果的概括和可观的改善。
We consider the problem of solving integer programs of the form $\min \{\,c^\intercal x\ \colon\ Ax=b, x\geq 0\}$, where $A$ is a multistage stochastic matrix in the following sense: the primal treedepth of $A$ is bounded by a parameter $d$, which means that the columns of $A$ can be organized into a rooted forest of depth at most $d$ so that columns not bound by the ancestor/descendant relation in the forest do not have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-parameter time $f(d,\|A\|_{\infty})\cdot n\log^{O(2^d)} n$, where $f$ is a computable function and $n$ is the number of rows of $A$. The algorithm works in the strong model, where the running time only measures unit arithmetic operations on the input numbers and does not depend on their bitlength. This is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear running time in the strong sense. For the case of two-stage stochastic integer programs, our algorithm works in time $2^{(2\|A\|_\infty)^{O(r(r+s))}}\cdot n\log^{O(rs)} n$. The algorithm can be also parallelized: we give an implementation in the PRAM model that achieves running time $f(d,\|A\|_{\infty})\cdot \log^{O(2^d)} n$ using $n$ processors. The main conceptual ingredient in our algorithms is a new proximity result for multistage stochastic integer programs. We prove that if we consider an integer program $P$, say with a constraint matrix $A$, then for every optimum solution to the linear relaxation of $P$ there exists an optimum (integral) solution to $P$ that lies, in the $\ell_{\infty}$-norm, within distance bounded by a function of $\|A\|_{\infty}$ and the primal treedepth of $A$. On the way to achieve this result, we prove a generalization and considerable improvement of a structural result of Klein for multistage stochastic integer programs.