论文标题

粒子图像速度法的元不确定性

Meta-Uncertainty for Particle Image Velocimetry

论文作者

Rajendran, Lalit K., Bhattacharya, Sayantan, Bane, Sally P. M., Vlachos, Pavlos P.

论文摘要

粒子图像速度法(PIV)的不确定性定量对于将流场与计算流体动力学(CFD)结果以及模型设计和验证进行比较至关重要。但是,PIV具有一个复杂的测量链,具有耦合,非线性误差源,并且量化不确定性是具有挑战性的。多次评估表明,当前的方法均无法可靠地衡量广泛实验的实际不确定性。由于当前的方法在测量过程和计算过程方面的假设有所不同,因此尚不清楚哪种方法最好用于实验。为了解决这个问题,我们提出了一种估计不确定性方法的敏感性和可靠性的方法,称为元不确定性。新型方法是自动化,局部和瞬时的,并且基于记录的粒子图像的扰动。我们开发了一个基于相关平面的信噪比(SNR)的询问窗口对中添加随机无与伦比的粒子的图像扰动方案。每个不确定性方案对几个随机粒子添加试验的响应都用于估计一个可靠性度量标准,定义为不确定性的不确定性的四分位间范围(IQR)的变化速率,并增加了粒子的添加水平。我们还建议将元不确定性作为加权度量标准,以根据共识预测文献的思想来结合单个方案的不确定性估计。我们使用各种规范流的PIV测量来评估不确定性方案的性能。结果表明,组合的不确定性方法的表现优于单个方法,并确定元不确定性作为用于调节不确定性量化的有用可靠性评估工具。

Uncertainty quantification for Particle Image Velocimetry (PIV) is critical for comparing flow fields with Computational Fluid Dynamics (CFD) results, and model design and validation. However, PIV features a complex measurement chain with coupled, non-linear error sources, and quantifying the uncertainty is challenging. Multiple assessments show that none of the current methods can reliably measure the actual uncertainty across a wide range of experiments. Because the current methods differ in assumptions regarding the measurement process and calculation procedures, it is not clear which method is best to use for an experiment. To address this issue, we propose a method to estimate an uncertainty method's sensitivity and reliability, termed the Meta-Uncertainty. The novel approach is automated, local, and instantaneous, and based on perturbation of the recorded particle images. We developed an image perturbation scheme based on adding random unmatched particles to the interrogation window pair considering the signal-to-noise (SNR) of the correlation plane. Each uncertainty scheme's response to several trials of random particle addition is used to estimate a reliability metric, defined as the rate of change of the inter-quartile range (IQR) of the uncertainties with increasing levels of particle addition. We also propose applying the meta-uncertainty as a weighting metric to combine uncertainty estimates from individual schemes, based on ideas from the consensus forecasting literature. We use PIV measurements across a range of canonical flows to assess the performance of the uncertainty schemes.The results show that the combined uncertainty method outperforms the individual methods, and establish the meta-uncertainty as a useful reliability assessment tool for PIV uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源