论文标题

物理信息的神经网络方法,用于向后和向后流分散方程

Physics-Informed Neural Network Method for Forward and Backward Advection-Dispersion Equations

论文作者

He, QiZhi, Tartakovsky, Alexandre M.

论文摘要

我们提出了一种基于物理知识的神经网络(PINN)方法的无离散方法,用于求解耦合的对流 - 分散和Darcy流动方程,并具有依赖于空间的水力传导率。在这种方法中,用深神经网络(DNN)近似液压传导率,液压头和浓度场。我们假设电导率字段由其在网格上的值给出,我们使用这些值来训练电导率DNN。通过将流程方程和ADE的残差以及使用初始和边界条件作为附加约束来最大程度地减少流程和浓度DNN。 PINN方法应用于一维正向对流 - 分散方程(ADES),其中将其用于各种Péclet编号($ PE $)的性能与分析和数值解决方案进行了比较。我们发现,PINN方法的准确性是准确的,误差小于1%,并且优于大于100的$ PE $ $ pe $的常规基于离散化的方法。接下来,我们证明PINN方法对于向后ADES仍然准确,与参考浓度相比,相对错误在大多数情况下保持在5%以下。最后,我们表明,如果有的话,可以轻松地将浓度测量值纳入PINN方法,并显着改善(在考虑的情况下超过50%)向后ADE的PINN溶液的精度。

We propose a discretization-free approach based on the physics-informed neural network (PINN) method for solving coupled advection-dispersion and Darcy flow equations with space-dependent hydraulic conductivity. In this approach, the hydraulic conductivity, hydraulic head, and concentration fields are approximated with deep neural networks (DNNs). We assume that the conductivity field is given by its values on a grid, and we use these values to train the conductivity DNN. The head and concentration DNNs are trained by minimizing the residuals of the flow equation and ADE and using the initial and boundary conditions as additional constraints. The PINN method is applied to one- and two-dimensional forward advection-dispersion equations (ADEs), where its performance for various Péclet numbers ($Pe$) is compared with the analytical and numerical solutions. We find that the PINN method is accurate with errors of less than 1% and outperforms some conventional discretization-based methods for $Pe$ larger than 100. Next, we demonstrate that the PINN method remains accurate for the backward ADEs, with the relative errors in most cases staying under 5% compared to the reference concentration field. Finally, we show that when available, the concentration measurements can be easily incorporated in the PINN method and significantly improve (by more than 50% in the considered cases) the accuracy of the PINN solution of the backward ADE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源