论文标题

深度relu网络神经切线内核最小特征值的紧密界限

Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks

论文作者

Nguyen, Quynh, Mondelli, Marco, Montufar, Guido

论文摘要

最近的一项工作已经通过神经切线内核(NTK)分析了深神经网络的理论特性。特别是,NTK的最小特征值与记忆能力,梯度下降算法的全球收敛性和深网的概括有关。但是,现有结果要么在两层设置中提供边界,要么假设对于多层网络,将NTK矩阵的频谱从0界限。在本文中,我们在无限宽度的限制情况下和有限宽度的情况下,在最小的NTK矩阵的最小特征值上提供了紧密的界限。在有限宽度的设置中,我们认为的网络体系结构相当笼统:我们需要大约有$ n $神经元的宽层,$ n $是数据示例的数量;剩余层宽度的缩放是任意的(取决于对数因素)。为了获得我们的结果,我们分析了各种量的独立兴趣:我们对隐藏特征矩阵的最小奇异值以及输入输出特征图的Lipschitz常数上的上限给出了下限。

A recent line of work has analyzed the theoretical properties of deep neural networks via the Neural Tangent Kernel (NTK). In particular, the smallest eigenvalue of the NTK has been related to the memorization capacity, the global convergence of gradient descent algorithms and the generalization of deep nets. However, existing results either provide bounds in the two-layer setting or assume that the spectrum of the NTK matrices is bounded away from 0 for multi-layer networks. In this paper, we provide tight bounds on the smallest eigenvalue of NTK matrices for deep ReLU nets, both in the limiting case of infinite widths and for finite widths. In the finite-width setting, the network architectures we consider are fairly general: we require the existence of a wide layer with roughly order of $N$ neurons, $N$ being the number of data samples; and the scaling of the remaining layer widths is arbitrary (up to logarithmic factors). To obtain our results, we analyze various quantities of independent interest: we give lower bounds on the smallest singular value of hidden feature matrices, and upper bounds on the Lipschitz constant of input-output feature maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源