论文标题
量身定制的手性光学环境中的手性热力学
Chiral thermodynamics in tailored chiral optical environments
论文作者
论文摘要
我们提出了一个光力学模型,描述了在两个反向传播高斯梁的驻波中形成的光轴势中散开的手性纳米颗粒的随机运动。我们展示了如何通过控制每个梁的极化,而无需修改初始双重性。在此控制下,产生光学手性密度和/或光学手性通量,分别与施加在扩散的手性手性纳米粒子上的反应性与耗散性手性光学力相关。这种光力学的手性耦合偏向屏障交叉的热活化的热力学,以取决于纳米颗粒对映体和光场对映体的方式。我们表明,反应性手性力是保守的,促成了赫尔姆霍尔茨自由能无性双向景观的全球,对象征的变化。相反,当手性纳米颗粒浸入耗散性手性环境中时,非保守性手性光学力量破坏了双态电位的对称性。在这种情况下,手性电磁场通过耗散的机械能连续转移到手性纳米粒子上。对于这种手性的非平衡稳态,屏障交叉的热力学变化采用传递到热浴的热量形式,并产生手性降解方案,这些方案可以在我们模型的框架内明确计算出来。三维随机模拟证实并进一步说明了手性的热力学影响。我们的结果揭示了纳米颗粒和光场的手性自由度如何转化为真正的热力学控制参数,从而证明了在随机热力学中的光力学手性偶联的重要性。
We present an optomechanical model that describes the stochastic motion of an overdamped chiral nanoparticle diffusing in the optical bistable potential formed in the standing-wave of two counter-propagating Gaussian beams. We show how chiral optical environments can be induced in the standing-wave with no modification of the initial bistability by controlling the polarizations of each beam. Under this control, optical chiral densities and/or an optical chiral fluxes are generated, associated respectively with reactive vs. dissipative chiral optical forces exerted on the diffusing chiral nanoparticle. This optomechanical chiral coupling bias the thermodynamics of the thermal activation of the barrier crossing, in ways that depend on the nanoparticle enantiomer and on the optical field enantiomorph. We show that reactive chiral forces, being conservative, contribute to a global, enantiospecific, change of the Helmholtz free energy bistable landscape. In contrast, when the chiral nanoparticle is immersed in a dissipative chiral environment, the symmetry of the bistable potential is broken by non-conservative chiral optical forces. In this case, the chiral electromagnetic fields continuously transfer, through dissipation, mechanical energy to the chiral nanoparticle. For this chiral nonequilibrium steady-state, the thermodynamic changes of the barrier crossing take the form of heat transferred to the thermal bath and yield chiral deracemization schemes that can be explicitly calculated within the framework of our model. Three-dimensional stochastic simulations confirm and further illustrate the thermodynamic impact of chirality. Our results reveal how chiral degrees of freedom both of the nanoparticle and of the optical fields can be transformed into true thermodynamics control parameters, thereby demonstrating the significance of optomechanical chiral coupling in stochastic thermodynamics.