论文标题

关于嵌入较高衍生模型中的爱因斯坦 - 希尔伯特重力的扰动量化

On the Perturbative Quantization of Einstein-Hilbert Gravity Embedded in a Higher Derivative Model

论文作者

Pottel, Steffen, Sibold, Klaus

论文摘要

在扰动方法中,Einstein-Hilbert Gravity在平坦的背景中进行了量化。为了使模型功率计算可重汇率,高阶曲率项将添加到操作中。它们充当Pauli-Villars型调节器,除了循环数量的标准扩展外,还需要在字段数量上进行扩展。然后在BPHZL方案中执行重归其化,该方案提供了构建Slavnov-Taylor身份和不变差分运算符的动作原理。爱因斯坦 - 希尔伯特理论的最终物理状态空间是通过Kugo和Ojima的四重奏机制实现的。绿色功能是为绿色功能而形式上的,也针对$ s $ -MATRIX得出了重归其化组和Callan-Symanzik方程。

In a perturbative approach Einstein-Hilbert gravity is quantized about a flat background. In order to render the model power counting renormalizable, higher order curvature terms are added to the action. They serve as Pauli-Villars type regulators and require an expansion in the number of fields in addition to the standard expansion in the number of loops. Renormalization is then performed within the BPHZL scheme, which provides the action principle to construct the Slavnov-Taylor identity and invariant differential operators. The final physical state space of the Einstein-Hilbert theory is realized via the quartet mechanism of Kugo and Ojima. Renormalization group and Callan-Symanzik equation are derived for the Green functions and, formally, also for the $S$-matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源