论文标题

基于ISING的Louvain方法:使用专业硬件聚类

Ising-Based Louvain Method: Clustering Large Graphs with Specialized Hardware

论文作者

Kalehbasti, Pouya Rezazadeh, Ushijima-Mwesigwa, Hayato, Mandal, Avradip, Ghosh, Indradeep

论文摘要

用于解决优化问题的专业硬件的最新进展,例如量子计算机,量子退火器和CMOS退火器,为解决现实词复杂问题提供了新的方法。但是,考虑到当前和近期硬件的限制,表达大型现实问题所需的变量数量很容易超过硬件功能,因此通常开发混合方法以利用硬件。在这项工作中,我们主张开发在现有最新启发式方法框架之上建立的混合方法,从而改善这些方法。我们通过基于所谓的Louvain方法来证明这一点,该方法是社区检测问题最受欢迎的算法之一,并开发了基于Ising的Louvain方法。所提出的方法在聚集了几个小型至大规模的图表方面优于两种最先进的社区检测算法。结果表明,将相同的优化方法适应其他无监督的学习启发式方法以提高其性能。

Recent advances in specialized hardware for solving optimization problems such quantum computers, quantum annealers, and CMOS annealers give rise to new ways for solving real-word complex problems. However, given current and near-term hardware limitations, the number of variables required to express a large real-world problem easily exceeds the hardware capabilities, thus hybrid methods are usually developed in order to utilize the hardware. In this work, we advocate for the development of hybrid methods that are built on top of the frameworks of existing state-of-art heuristics, thereby improving these methods. We demonstrate this by building on the so called Louvain method, which is one of the most popular algorithms for the Community detection problem and develop and Ising-based Louvain method. The proposed method outperforms two state-of-the-art community detection algorithms in clustering several small to large-scale graphs. The results show promise in adapting the same optimization approach to other unsupervised learning heuristics to improve their performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源