论文标题

文档级别的关系提取与重建

Document-Level Relation Extraction with Reconstruction

论文作者

Xu, Wang, Chen, Kehai, Zhao, Tiejun

论文摘要

在文档级关系提取(DOCRE)中,图表结构通常用于编码输入文档中的关系信息,以对每个实体对之间的关​​系类别进行分类,并且在过去几年中大大提出了DOCRE任务。但是,无论这些实体对之间是否存在关系,所有实体对之间的学识图表示都在所有实体对之间普遍模型。因此,那些没有关系的实体将编码器分类器DOC的注意力分散到具有关系的人的注意力,这可能进一步阻碍了DOCRE的改善。为了减轻此问题,我们为DOCRE提出了一种新颖的编码器分类器重建器模型。重建者设法从图表表示的基础真相路径依赖关系重建,以确保所提出的DOCRE模型更多地关注编码实体对与培训中的关系。此外,重建者被视为一种关系指标,以帮助推理中的关系分类,这可以进一步提高DOCRE模型的性能。大规模DOCRE数据集的实验结果表明,所提出的模型可以显着提高基于强图基线的关系提取的准确性。

In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past several years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源