论文标题
单眼深度参数化网络
Monocular Depth Parameterizing Networks
论文作者
论文摘要
单眼深度估计是一个高度挑战性的问题,通常通过深层神经网络解决。尽管这些能够使用对图像特征的识别来预测看起来合理的深度地图,但结果通常具有低度量的准确性。相比之下,使用多个摄像机的传统立体声方法可以在像素匹配时提供高度准确的估计。在这项工作中,我们建议将两种方法相结合,以利用它们各自的优势。为此,我们提出了一个给定图像的网络结构,提供了具有可行形状的一组深度图的参数化。然后对参数化进行优化,然后我们可以搜索形状,以找到相对于其他图像的照片一致的解决方案。这使我们能够强制执行难以在单个图像中观察到的几何特性,并放松学习问题,使我们能够使用相对较小的网络。我们的实验评估表明,我们的方法比竞争的最先进方法生成更准确的深度图和概括。
Monocular depth estimation is a highly challenging problem that is often addressed with deep neural networks. While these are able to use recognition of image features to predict reasonably looking depth maps the result often has low metric accuracy. In contrast traditional stereo methods using multiple cameras provide highly accurate estimation when pixel matching is possible. In this work we propose to combine the two approaches leveraging their respective strengths. For this purpose we propose a network structure that given an image provides a parameterization of a set of depth maps with feasible shapes. Optimizing over the parameterization then allows us to search the shapes for a photo consistent solution with respect to other images. This allows us to enforce geometric properties that are difficult to observe in single image as well as relaxes the learning problem allowing us to use relatively small networks. Our experimental evaluation shows that our method generates more accurate depth maps and generalizes better than competing state-of-the-art approaches.