论文标题

耦合$ \ MATHCAL {N} $ = 2超对称量子系统:对称和可超级方法

Coupled $\mathcal{N}$ = 2 supersymmetric quantum systems: symmetries and supervariable approach

论文作者

Pradeep, Aditi, S, Anjali, Nair, Binu M, Gupta, Saurabh

论文摘要

我们考虑了$ \ Mathcal {n} $ = 2超对称量子机械模型的特定示例,并列出了所有新颖的对称性。在每种情况下,我们都会显示出与差异几何形状的Hodge二元性算子相对应的两组离散对称性集的存在。因此,我们能够提供一个猜想的证明,该猜想认可存在多个离散对称转换为霍奇二元性操作的类似物。最后,我们将分析扩展到更一般的案例,并在可超级方法的方法框架内得出了壳的nilpotent对称性。

We consider specific examples of $\mathcal{N}$ = 2 supersymmetric quantum mechanical models and list out all the novel symmetries. In each case, we show the existence of two sets of discrete symmetries that correspond to the Hodge duality operator of differential geometry. Thus, we are able to provide a proof of the conjecture which endorses the existence of more than one discrete symmetry transformation as the analogue of Hodge duality operation. Finally, we extend our analysis to a more general case and derive on-shell nilpotent symmetries within the framework of supervariable approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源