论文标题

与无线信号对基于机器学习的本地化的全面调查

A Comprehensive Survey of Machine Learning Based Localization with Wireless Signals

论文作者

Burghal, Daoud, Ravi, Ashwin T., Rao, Varun, Alghafis, Abdullah A., Molisch, Andreas F.

论文摘要

在过去的几十年中,人们对基于位置的服务产生了越来越兴趣。使用基于射频(RF)信号的定位系统证明了其对室内和室外应用的功效。但是,在此类系统的复杂性和准确性方面仍然存在挑战。机器学习(ML)是缓解这些问题的最有前途的方法之一,因为ML(尤其是深度学习)提供了可以集成到本地化系统中的强大实用数据驱动的工具。在本文中,我们对使用RF信号的基于ML的本地化解决方案进行了全面调查。调查跨越不同的方面,从系统体系结构到输入功能,ML方法和数据集不等。 本文的要点是由定位系统的物理学和各种ML方法引起的域知识之间的相互作用。除ML方法外,利用的输入功能在塑造本地化解决方案中起着重要作用。我们详细讨论了不同的特征以及可能影响它们的影响,无论是基础的无线技术或标准还是预处理技术。详细的讨论专门针对已应用于本地化问题的不同ML方法,讨论了潜在的问题和解决方案结构。此外,我们总结了获取数据集的不同方式,然后列出了公开可用的数据集。总体而言,该调查对该领域近400篇论文的见解进行了分类和总结。 这项调查是独立的,因为我们对主要ML和无线传播概念进行了简短的审查,这将帮助任何一个领域的研究人员浏览被调查的解决方案,并提出了开放问题。

The last few decades have witnessed a growing interest in location-based services. Using localization systems based on Radio Frequency (RF) signals has proven its efficacy for both indoor and outdoor applications. However, challenges remain with respect to both complexity and accuracy of such systems. Machine Learning (ML) is one of the most promising methods for mitigating these problems, as ML (especially deep learning) offers powerful practical data-driven tools that can be integrated into localization systems. In this paper, we provide a comprehensive survey of ML-based localization solutions that use RF signals. The survey spans different aspects, ranging from the system architectures, to the input features, the ML methods, and the datasets. A main point of the paper is the interaction between the domain knowledge arising from the physics of localization systems, and the various ML approaches. Besides the ML methods, the utilized input features play a major role in shaping the localization solution; we present a detailed discussion of the different features and what could influence them, be it the underlying wireless technology or standards or the preprocessing techniques. A detailed discussion is dedicated to the different ML methods that have been applied to localization problems, discussing the underlying problem and the solution structure. Furthermore, we summarize the different ways the datasets were acquired, and then list the publicly available ones. Overall, the survey categorizes and partly summarizes insights from almost 400 papers in this field. This survey is self-contained, as we provide a concise review of the main ML and wireless propagation concepts, which shall help the researchers in either field navigate through the surveyed solutions, and suggested open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源