论文标题
半导体多模激光器中的完整,平行和自主光子神经网络
A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser
论文作者
论文摘要
神经网络是我们这个时代的破坏性计算概念之一。但是,它们从根本上与许多基本方面的经典算法计算有所不同。这些差异导致使用当前计算基板对神经网络计算的基本,严重和相关的挑战。神经网络敦促在整个处理器上建立并行性,并共同设置记忆和算术,即冯·诺伊曼(Von Neumann)架构之外。尤其是平行性使光子学成为一个非常有前途的平台,但到目前为止,可扩展且可集成的概念很少。在这里,我们首次使用有效且快速的半导体激光器的空间分布模式来实现完全平行和完全实现的光子神经网络。重要的是,所有神经网络连接均在硬件中实现,我们的处理器无需进行预处理或后处理而产生结果。在大面积垂直腔表面发射激光器中实现了130多个节点,通过多模纤维的复杂传输矩阵和数字微型摩尔阵列来实现输入和输出权重。我们训练读数重量以执行2位标题识别,2位XOR和2位数字模拟转换,并分别获得<0.9 10^-3和2.9 10^-2 Digit识别和XOR的错误率。最后,数字模拟转换只能以5.4 10^-2的标准偏差来实现。我们的系统可扩展到更大的尺寸和超过20 GHz的带宽。
Neural networks are one of the disruptive computing concepts of our time. However, they fundamentally differ from classical, algorithmic computing in a number of fundamental aspects. These differences result in equally fundamental, severe and relevant challenges for neural network computing using current computing substrates. Neural networks urge for parallelism across the entire processor and for a co-location of memory and arithmetic, i.e. beyond von Neumann architectures. Parallelism in particular made photonics a highly promising platform, yet until now scalable and integratable concepts are scarce. Here, we demonstrate for the first time how a fully parallel and fully implemented photonic neural network can be realized using spatially distributed modes of an efficient and fast semiconductor laser. Importantly, all neural network connections are realized in hardware, and our processor produces results without pre- or post-processing. 130+ nodes are implemented in a large-area vertical cavity surface emitting laser, input and output weights are realized via the complex transmission matrix of a multimode fiber and a digital micro-mirror array, respectively. We train the readout weights to perform 2-bit header recognition, a 2-bit XOR and 2-bit digital analog conversion, and obtain < 0.9 10^-3 and 2.9 10^-2 error rates for digit recognition and XOR, respectively. Finally, the digital analog conversion can be realized with a standard deviation of only 5.4 10^-2. Our system is scalable to much larger sizes and to bandwidths in excess of 20 GHz.