论文标题
将深层神经网络与全波倒置集成:重新绘制,正则化和不确定性定量
Integrating Deep Neural Networks with Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification
论文作者
论文摘要
全波形反演(FWI)是一种准确的成像方法,用于通过最大程度地减少记录和预测的地震波形之间的不合适,对速度结构进行建模。然而,拟合振荡波形产生的FWI的强非线性性能将优化捕获到局部最小值中。我们提出了一种基于神经网络的完整波形反演方法(NNFWI),该方法通过将速度模型与生成性神经网络代表速度模型来集成深层神经网络。神经网络自然可以将空间相关性作为与生成的速度模型的正则化,从而抑制梯度中的噪声并减轻局部最小值。神经网络生成的速度模型输入了常规FWI中使用的相同部分微分方程(PDE)求解器。神经网络和PDE的梯度都是使用自动分化来计算的,这些梯度通过声学PDE和神经网络层进行了反向传播,以更新生成神经网络的权重。对1D速度模型,Marmousi模型和2004 BP模型的实验表明,NNFWI可以减轻局部最小值,尤其是用于成像诸如盐体之类的高对比度特征,并在噪声存在下显着改善了反转。将辍学层添加到神经网络模型中还可以通过Monte Carlo辍学分析反转结果的不确定性。 NNFWI开辟了一条新的途径,将深度学习和FWI结合起来,以利用深神经网络的特征和PDE求解器的高精度。由于NNFWI不需要额外的训练数据和优化循环,因此它为常规FWI提供了一种有吸引力且直接的替代方案。
Full-waveform inversion (FWI) is an accurate imaging approach for modeling velocity structure by minimizing the misfit between recorded and predicted seismic waveforms. However, the strong non-linearity of FWI resulting from fitting oscillatory waveforms can trap the optimization in local minima. We propose a neural-network-based full waveform inversion method (NNFWI) that integrates deep neural networks with FWI by representing the velocity model with a generative neural network. Neural networks can naturally introduce spatial correlations as regularization to the generated velocity model, which suppresses noise in the gradients and mitigates local minima. The velocity model generated by neural networks is input to the same partial differential equation (PDE) solvers used in conventional FWI. The gradients of both the neural networks and PDEs are calculated using automatic differentiation, which back-propagates gradients through the acoustic PDEs and neural network layers to update the weights of the generative neural network. Experiments on 1D velocity models, the Marmousi model, and the 2004 BP model demonstrate that NNFWI can mitigate local minima, especially for imaging high-contrast features like salt bodies, and significantly improves the inversion in the presence of noise. Adding dropout layers to the neural network model also allows analyzing the uncertainty of the inversion results through Monte Carlo dropout. NNFWI opens a new pathway to combine deep learning and FWI for exploiting both the characteristics of deep neural networks and the high accuracy of PDE solvers. Because NNFWI does not require extra training data and optimization loops, it provides an attractive and straightforward alternative to conventional FWI.