论文标题

通过稀疏零阶优化的功能优化的光学神经网络的有效片上学习

Efficient On-Chip Learning for Optical Neural Networks Through Power-Aware Sparse Zeroth-Order Optimization

论文作者

Gu, Jiaqi, Feng, Chenghao, Zhao, Zheng, Ying, Zhoufeng, Chen, Ray T., Pan, David Z.

论文摘要

光学神经网络(ONNS)由于超高的执行速度和低能消耗而显示出高性能神经形态计算的创纪录潜力。但是,当前的学习方案无法为实用应用中的光子电路优化提供可扩展有效的解决方案。在这项工作中,我们提出了一个新颖的片上学习框架,以释放ONN的全部潜力,以实现原位训练。我们直接使用计算预算和功率约束来优化设备配置,而不是部署实现和稳定的后传播。我们是第一个将ONN芯片学习建模为一种资源受限的随机噪声零级优化问题,并提出一种具有两级稀疏性和功能感知动态的动态修剪的新型混合训练策略,以在实践ONN部署中提供可扩展的片上培训解决方案。与以前的方法相比,我们是第一个在芯片上优化2,500多个光学组件的人。我们可以实现更好的优化稳定性,效率提高3.7倍-7.6倍,并在实际设备变化和热串扰下节省> 90%的功率。

Optical neural networks (ONNs) have demonstrated record-breaking potential in high-performance neuromorphic computing due to their ultra-high execution speed and low energy consumption. However, current learning protocols fail to provide scalable and efficient solutions to photonic circuit optimization in practical applications. In this work, we propose a novel on-chip learning framework to release the full potential of ONNs for power-efficient in situ training. Instead of deploying implementation-costly back-propagation, we directly optimize the device configurations with computation budgets and power constraints. We are the first to model the ONN on-chip learning as a resource-constrained stochastic noisy zeroth-order optimization problem, and propose a novel mixed-training strategy with two-level sparsity and power-aware dynamic pruning to offer a scalable on-chip training solution in practical ONN deployment. Compared with previous methods, we are the first to optimize over 2,500 optical components on chip. We can achieve much better optimization stability, 3.7x-7.6x higher efficiency, and save >90% power under practical device variations and thermal crosstalk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源