论文标题

绘制定向大脑网络的贝叶斯州空间方法

A Bayesian State-Space Approach to Mapping Directional Brain Networks

论文作者

Li, Huazhang, Wang, Yaotian, Yan, Guofen, Sun, Yinge, Tanabe, Seiji, Liu, Chang-Chia, Quigg, Mark, Zhang, Tingting

论文摘要

人脑是涉及方向连通性的大脑区域的定向网络系统。癫痫发作是一种定向网络现象,因为异常的神经元活性从癫痫发作区(SOZ)开始,并传播到其他健康的区域。为了定位癫痫患者的SOZ,临床医生使用IEEG记录了许多小区域中患者的颅内脑活动。 IEEG数据是高维多元时间序列。我们为IEEG数据构建了状态空间多元自动进度(SSMAR),以对基础定向大脑网络进行建模。为了产生科学解释的网络结果,我们将基础大脑网络倾向于具有群集结构的科学知识纳入了SSMAR。具体而言,我们分配给SSMAR参数一个随机块模块,以反映群集结构的先验。我们开发一个贝叶斯框架来估计SSMAR,推断定向连接并确定未观察到的网络边缘的聚类。新方法对违反模型假设的侵犯和胜过现有网络方法的强大。通过将新方法应用于癫痫患者的IEEG数据,我们揭示了患者大脑网络中的癫痫发作和传播。我们的方法还可以准确地定位SOZ。总体而言,本文提供了研究人脑网络的工具。

The human brain is a directional network system of brain regions involving directional connectivity. Seizures are a directional network phenomenon as abnormal neuronal activities start from a seizure onset zone (SOZ) and propagate to otherwise healthy regions. To localize the SOZ of an epileptic patient, clinicians use iEEG to record the patient's intracranial brain activity in many small regions. iEEG data are high-dimensional multivariate time series. We build a state-space multivariate autoregression (SSMAR) for iEEG data to model the underlying directional brain network. To produce scientifically interpretable network results, we incorporate into the SSMAR the scientific knowledge that the underlying brain network tends to have a cluster structure. Specifically, we assign to the SSMAR parameters a stochastic-blockmodel-motivated prior, which reflects the cluster structure. We develop a Bayesian framework to estimate the SSMAR, infer directional connections, and identify clusters for the unobserved network edges. The new method is robust to violations of model assumptions and outperforms existing network methods. By applying the new method to an epileptic patient's iEEG data, we reveal seizure initiation and propagation in the patient's brain network. Our method can also accurately localize the SOZ. Overall, this paper provides a tool to study the human brain network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源