论文标题

通过进展学习预测不可逆疾病

Forecasting Irreversible Disease via Progression Learning

论文作者

Wu, Botong, Ren, Sijie, Li, Jing, Sun, Xinwei, Li, Shiming, Wang, Yizhou

论文摘要

预测阶段性萎缩症(PPA),即与大多数不可逆的眼部疾病有关的症状,为实施干预措施减慢早期疾病进展提供了警报。这个预测的一个关键问题是:如何完全利用历史数据(例如,视网膜图像)到当前疾病预测的当前阶段?在本文中,我们提供了一个具有新颖框架的答案,即\ textbf {d} isease \ textbf {f} orecast通过\ textbf {p} rogsression \ textbf {l textbf {l} readning(\ textbf {dfpl})具体而言,基于这一先验,我们分解了有助于预测未来疾病的两个因素:i)当前疾病标签鉴于目前的数据(视网膜图像,临床属性)和II)鉴于视网膜图像从当前到未来的视网膜图像的发展。为了建模这两个因素,我们分别介绍了DFPL中的当前和进程预测因子。为了说明疾病的进展程度,我们提出了一个时间生成模型,以准确生成未来的图像并将其与当前的图像进行比较以获取残留图像。生成模型由经常性神经网络实施,以利用历史数据的依赖性。为了验证我们的方法,我们将其应用于PPA内部数据集,并产生显着改进(\ textIt {e.g。},\ textbf {4.48 \%}的准确性; \ textbf {3.45 \%} auc的auc)比其他auc)。此外,我们的生成模型可以准确地定位与疾病相关的区域。

Forecasting Parapapillary atrophy (PPA), i.e., a symptom related to most irreversible eye diseases, provides an alarm for implementing an intervention to slow down the disease progression at early stage. A key question for this forecast is: how to fully utilize the historical data (e.g., retinal image) up to the current stage for future disease prediction? In this paper, we provide an answer with a novel framework, namely \textbf{D}isease \textbf{F}orecast via \textbf{P}rogression \textbf{L}earning (\textbf{DFPL}), which exploits the irreversibility prior (i.e., cannot be reversed once diagnosed). Specifically, based on this prior, we decompose two factors that contribute to the prediction of the future disease: i) the current disease label given the data (retinal image, clinical attributes) at present and ii) the future disease label given the progression of the retinal images that from the current to the future. To model these two factors, we introduce the current and progression predictors in DFPL, respectively. In order to account for the degree of progression of the disease, we propose a temporal generative model to accurately generate the future image and compare it with the current one to get a residual image. The generative model is implemented by a recurrent neural network, in order to exploit the dependency of the historical data. To verify our approach, we apply it to a PPA in-house dataset and it yields a significant improvement (\textit{e.g.}, \textbf{4.48\%} of accuracy; \textbf{3.45\%} of AUC) over others. Besides, our generative model can accurately localize the disease-related regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源