论文标题
稳定基于随机预测和目标对照的循环的稳定
Stabilization of cycles with stochastic prediction-based and target-oriented control
论文作者
论文摘要
我们使用脉冲随机对照稳定了规定的循环或差方程的平衡。我们的技术受到大量Kolmogorov定律的启发,激活了随机扰动的稳定效果,并允许使用对控制参数的范围更大的范围稳定,而不是在没有噪声的情况下可能会稳定。 我们的主要总体结果适用于基于预测和面向目标的控件。该分析是第一个利用噪声的稳定效应来基于预测的控制。在文献中已经检查了随机版本,但仅证明了噪声的不稳定效果。据我们所知,从未考虑过以目标控制的随机变体,我们提出了一种特定形式,该形式使用点平衡或一个循环中的一个点作为目标。我们在数值上展示了人口生物学的物流,Ricker和Maynard Smith模型的结果。
We stabilize a prescribed cycle or an equilibrium of the difference equation using pulsed stochastic control. Our technique, inspired by the Kolmogorov's Law of Large Numbers, activates a stabilizing effect of stochastic perturbation and allows for stabilization using a much wider range for the control parameter than would be possible in the absence of noise. Our main general result applies to both Prediction-Based and Target-Oriented Controls. This analysis is the first to make use of the stabilizing effects of noise for Prediction-Based Control; the stochastic version has been examined in the literature, but only the destabilizing effect of noise was demonstrated. A stochastic variant of Target-Oriented Control has never been considered, to the best of our knowledge, and we propose a specific form that uses a point equilibrium or one point on a cycle as a target. We demonstrate our results numerically on the logistic, Ricker and Maynard Smith models from population biology.