论文标题

爱马仕:持久的光谱图软件

HERMES: Persistent spectral graph software

论文作者

Wang, Rui, Zhao, Rundong, Ribando-Gros, Emily, Chen, Jiahui, Tong, Yiying, Wei, Guo-Wei

论文摘要

持续的同源性(PH)是拓扑数据分析(TDA)中最流行的工具之一,而图理论对数据科学产生了重大影响。我们的早期工作将持久的光谱图(PSG)理论作为统一的多尺度范式介绍,以包含TDA和几何分析。在PSG理论中,通过过滤构建了与各种拓扑维度相对应的持久性拉普拉斯(PLS)家族,以在多个尺度上采样给定数据集。来自PL的空空间的谐波光谱具有与pH提供的不同维度相同的拓扑不变性,即持续的betti数字,而PL的非谐波光谱则可以对数据的形状进行其他几何分析。在这项工作中,我们开发了一个开源软件包,称为高效稳健的多维进化光谱(HERMES),以实现PSG在科学,工程和技术中的广泛应用。为了确保爱马仕的可靠性和鲁棒性,我们已经通过三维(3D)蛋白质结构的简单几何形状和复杂数据集验证了该软件。我们发现,最小的非零特征值对数据异常非常敏感。

Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacians (PLs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源