论文标题
替代起源的双曲线平面的瓷砖作为鲍姆斯拉格 - 统治组的有限类型的亚缩短$ bs(1,n)$
Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag-Solitar groups $BS(1,n)$
论文作者
论文摘要
我们提出了一种技术,可以将离散双曲机平面的某些瓷砖(由一维替换定义)置于非亚伯利亚amenable Baumslag-solitar offer $ bs(1,n)$ $ n \ geq2 $的零熵shift零熵子缩影中。对于精心选择的双曲线瓷砖,此SFT也是静脉且最小的。作为一个应用程序,我们在$ bs(1,n)$上构建了一个具有层次结构的$ BS(1,n)$,这是Robinson在$ \ Mathbb {Z}^2 $或Goodman-Strauss上的构造的类似物,或者是$ \ Mathbb {H} {H} _2 $。
We present a technique to lift some tilings of the discrete hyperbolic plane -- tilings defined by a 1D substitution -- into a zero entropy subshift of finite type (SFT) on non-abelian amenable Baumslag-Solitar groups $BS(1,n)$ for $n\geq2$. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application we construct a strongly aperiodic SFT on $BS(1,n)$ with a hierarchical structure, which is an analogue of Robinson's construction on $\mathbb{Z}^2$ or Goodman-Strauss's on $\mathbb{H}_2$.