论文标题
负重负重的算术方案的weil-étale的共同体和二元性
Weil-étale cohomology and duality for arithmetic schemes in negative weights
论文作者
论文摘要
Flach和Morin在(文档数学23(2018),1425---1560)中构建Weil-étalecohomology $ h^i__ \文本{ \ Mathbb {Z} $)和$ n \ in \ Mathbb {z} $。在$ n <0 $的情况下,我们将其构造概括为任意算术方案$ x $,从而消除了适当的定期假设。该建筑假定有限的生成合适的动机共同体学组。
Flach and Morin constructed in (Doc. Math. 23 (2018), 1425--1560) Weil-étale cohomology $H^i_\text{W,c} (X, \mathbb{Z} (n))$ for a proper, regular arithmetic scheme $X$ (i.e. separated and of finite type over $\operatorname{Spec} \mathbb{Z}$) and $n \in \mathbb{Z}$. In the case when $n < 0$, we generalize their construction to an arbitrary arithmetic scheme $X$, thus removing the proper and regular assumption. The construction assumes finite generation of suitable étale motivic cohomology groups.