论文标题

单位球上的矢量值伯格曼空间之间的小汉克尔操作员

Little Hankel Operators Between Vector-Valued Bergman Spaces on the Unit Ball

论文作者

Békollé, David, Defo, Hugues Olivier, Tchoundja, Edgar L., Wick, Brett D.

论文摘要

在本文中,我们研究了Little Hankel运营商$ H_B $的界限和紧凑性,并在开放单位球$ \ Mathbb {b} _n $ in Blan $ \ Mathbb {c}^n。 \ leq 1,$我们表征那些操作员值符号$ b:\ mathbb {b} _ {n} \ rightarrow \ Mathcal \ Mathcal \ Mathcal {l}(\ edielline {x},y)$,为此小hankel operator $ h_ p} a^q_α(\ mathbb {b} _ {n},y),$是一个有界的操作员。另外,给定两个反射复杂的Banach空间$ x,y $和$ 1 <p \ leq q <\ infty,我们表征了那些操作员值的符号$ b:\ mathbb {b} _ {n} \ rightarrow \ rightarrow \ rightarrow \ mathcal \ mathcal {l}(l}(l}(x \ yline {x},x},y {by y)$ hankel $ hankEl hankel, a^p_α(\ mathbb {b} _ {n},x)\ longrightArrow a^q_α(\ mathbb {b} _ {n},y),$是一个紧凑的操作员。

In this paper, we study the boundedness and the compactness of the little Hankel operators $h_b$ with operator-valued symbols $b$ between different weighted vector-valued Bergman spaces on the open unit ball $\mathbb{B}_n$ in $\mathbb{C}^n.$ More precisely, given two complex Banach spaces $X,Y,$ and $0 < p,q \leq 1,$ we characterize those operator-valued symbols $b: \mathbb{B}_{n}\rightarrow \mathcal{L}(\overline{X},Y)$ for which the little Hankel operator $h_{b}: A^p_α(\mathbb{B}_{n},X) \longrightarrow A^q_α(\mathbb{B}_{n},Y),$ is a bounded operator. Also, given two reflexive complex Banach spaces $X,Y$ and $1 < p \leq q < \infty,$ we characterize those operator-valued symbols $b: \mathbb{B}_{n}\rightarrow \mathcal{L}(\overline{X},Y)$ for which the little Hankel operator $h_{b}: A^p_α(\mathbb{B}_{n},X) \longrightarrow A^q_α(\mathbb{B}_{n},Y),$ is a compact operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源